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Abstract

A model is developed for multivariate distributions which have nearly the same marginals, up to
shift and scale. This model, based on �interpolation� of characteristic functions, gives a new notion
of �correlation�. It allows straightforward nonparametric estimation of the common marginal distri-
bution, which avoids the �curse of dimensionality� present when nonparametically estimating the full
multivariate distribution. The method is illustrated with environmental monitoring network data, where
multivariate modelling with common marginals is often appropriate.
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1 Introduction

When the data are sparse in multivariate statistical analysis, the statistician often has little alternative to

normal theory methods, even when the data are clearly not normal, because there is insufficient information

in the data for the usual nonparametric alternatives, as for example density estimation. This is a common

situation in environmental monitoring data, where, up to shift and scale, it is sensible to view the marginal

distributions of observations at different monitoring stations as all the same.

Here we propose a semiparametric multivariate model for distributions where the marginals are the

same. The problem of multivariate modelling from given marginals has been extensively studied in the

literature; see for example Genest and Mackay (1986); Huchinson and Lai (1990); Yashin, Vaupel and

Iachine (1995); Yashin and Iachine (1996); Olkin (1994) for a comprehensive review of this subject, and

Mardia (1970) for an earlier history. Some of the general attempts for this kind of modelling are within the

framework of the so called frailty distributions which are generated by mixtures of distribution or survival

functions (Marshall and Olkin, 1988). These methods require knowledge of the explicit form of the one-

dimensional distribution function and are particularly useful for reliability and extreme value distributions.

Other approaches, like the random-additive-effects model (Barndorff-Nielsen, Blaesild and Seshadri, 1992),

are based on moment generating or characteristic functions.

In our approach, very mild nonparametric assumptions are made about the common marginal distri-

bution. The multivariate model is constructed through decomposition of characteristic functions by an

�interpolation formula� having the totally dependent and the independent models as extreme points, and

in such a way that the usual multivariate Gaussian results when the marginal distributions are Gaussian.

This last property does not hold for other approaches to this problem. A by-product of this modelling is

a new look at measures of dependence. Our model gives a class of such measures which includes the usual

Pearson correlation coefficient as a special case. A new view as to why other measures of correlation are

probably more useful when the distribution is not multivariate Gaussian is provided.

The problem of multivariate density estimation with common marginals arises naturally in the context

of environmental monitoring network design and evaluation; see for example Caselton and Zidek (1984) and
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Pérez-Abreu and Rodŕõguez (1996). SpeciÞcally, a network consists of d possible monitoring sites where

one or several environmental variables are monitored. In the case of a single variable, it is assumed that

at each site the variable follows a common distribution with density f(xj), j = 1, ..., d. The corresponding

multivariate density f(x1, ..., xd) for the d stations is needed to compute the Shannon index, which is a

quantiÞcation of the quality of the performance of the network. Experience shows that the assumption of

equal marginals after a location-scale transformation is reasonable here. One then expects an environmental

variable to originate from the same family of distributions at each monitoring station.

Our multivariate model is developed in Section 2, where we also propose a method for estimating the

dependence parameters. Section 3 presents some theoretical properties of the model, its relationship to

cumulants, to the multivariate Gaussian distribution, and a discussion of the connection between the new

dependence parameters and the usual correlation coefficients and other concepts of dependence. Results

of a computational study to evaluate the performance of the estimation method are presented in Section

4. In Section 5 we Þt the model to CO and Ozone data from the environmental monitoring network in

Mexico City.

2 Dependence model

2.1 Proposed model

A useful tool for understanding the multivariate probability distribution of a random vector X−→ = (X1, ...,

Xd)
0 ∈ Rd is its joint probability density function fX−→(x1, ..., xd) (when it exists). Another representation

of the joint distribution is through its characteristic function

φX−→( t−→) = Ee
i t0−→X−→ =

Z ∞

−∞
· · ·
Z ∞

−∞
ei t

0−→ x−→fX−→( x−→)dx1 · · · dxd,

which is the Fourier Transform of the density, or in general of a multivariate probability distribution. For

a comprehensive review of multivariate characteristic functions we refer to the book by Cuppens (1975).

Our multivariate model assumes a common marginal density f(x), i.e. for j = 1, ..., d

f(xj) =

Z ∞

−∞
· · ·
Z ∞

−∞
fX−→(x1, ..., xd)dx1 · · · dxj−1dxj+1 · · · dxd.
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This entails a common marginal characteristic function

φ(t) =

Z ∞

−∞
eitxf(x)dx.

When the components of X−→ are independent, the joint density factors as

fX−→( x−→) =
dY
j=1

f(xj),

and the joint characteristic function also factors as

φX−→( t−→) =
dY
j=1

φ(tj). (1)

When d = 2, and the components of X−→ are the same, i.e. X1 = X2, the joint characteristic function has

the simple form

φX−→


 t1

t2


 = Eei(t1X1+t2X1) = φ(t1 + t2). (2)

Our multivariate model is a �geometric mixture� of the characteristic functions (1) and (2). Hence it

can be viewed as a combination (in the Fourier domain) of distributions that are independent and have

marginal variables that are the same. In particular, in the case d = 2, for a given marginal characteristic

function φ(t), and given a parameter α ∈ [0, 1], our bivariate model is the distribution (when it exists)

with interpolated characteristic function

φX−→


 t1

t2


 = φ (t1 + t2)α [φ(t1)φ(t2)]1−α . (3)

When α = 1, the total dependence model is obtained, while α = 0 yields the independent case, in analogy

with the usual correlation coefficient. In general, powers of the characteristic function φ(t) are deÞned

by [φ(t)]α = exp[α log φ(t)], where we take for log φ(t) the principal branch of the complex logarithm,

that is, the one for which log φ(0) = 0. As will be seen in Section 3.1, this leads to a proper multivariate

distribution, when φ corresponds to an inÞnitely divisible distribution.

In Section 3.2 it is seen that when the marginal distribution is the standard Gaussian, this reduces to

the bivariate Gaussian distribution with correlation α. In Section 3.3 it is seen that the usual Pearson

4



correlation coefficient (deÞned for any multivariate distribution with second moments) is a special case of α

which results from Þtting this model (with respect to different norms) to the joint characteristic function.

In the general case having d ≥ 3, given parameters αj,k = αk,j ∈ [0, 1], j, k = 1, ..., d, j 6= k, withPd
k=1,k 6=j αj,k ≤ 1 for each j, our model is the multivariate distribution (when it exists) with characteristic

function

φX−→( t−→) =
 Y

1≤j<k≤d
φ(tj + tk)

αj,k

 ·
 dY
j=1

φ(tj)
1−Pd

k=1,k 6=j
αj,k

 . (4)

Again in the standard Gaussian case, the αj,k are the usual correlations.

2.2 Estimation

Data X−→(1), ..., X−→(n) is assumed to be in the form of marginal standardizations, that is, each original

sample is modiÞed by subtracting the marginal mean and dividing by the marginal standard deviation.

To estimate the marginal characteristic function φ and the parameters αj,k in this model recall that an

unbiased estimate of the joint characteristic function is the �empirical characteristic function� (see for

example Epps (1993)):

bφX−→( t−→) = n−1
nX
`=1

ei t
0−→X−→(`)

. (5)

�Pooling� the marginal versions of this empirical characteristic function (using the assumption of same

marginals) gives the following estimate of φ:

bφ(t) = d−1
dX
j=1

bφXj (t) = (nd)
−1

nX
`=1

dX
j=1

eitX
(`)
j .

The αj,k are then taken to �make the model match the joint distribution as well as possible�. In particular,

given some norm k·k on Rd, take the vector bα−→ of estimates bαj,k to be
argmin

α−→

°°°°°°bφX−→( t−→)−
 Y

1≤j<k≤d
bφ(tj + tk)αj,k

 ·
 dY
j=1

bφ(tj)1−Pd

k=1,k 6=j
αj,k

°°°°°° .
Insight into the anticipated behavior of these estimates, in particular how well this model Þts various types

of multivariate distributions having characteristic function ψ( t−→), comes from studying the �theoretical

version�, eα−→ of approximations eαj,k, deÞned to be
argmin

α−→

°°°ψ( t−→)− φX−→( t−→)°°° .
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In Section 3.3 we show that under a limiting argument, the minimizing values bα−→ and eα−→ are the empir-

ical and theoretical (respectively) Pearson correlation coefficients. Thus we have developed generalizations

of the notion of �measure of correlation� which can be viewed as more sensible than the Pearson version,

as shown by the computational results of Section 4.

In many applications it is of interest to obtain an estimate of the joint density of the observations. For

this we use an inversion formula on the Þtted joint characteristic function (see Cuppens, 1975, Th. 2.3.1).

Let �φX−→( t−→) be the Þtted characteristic function obtained by substituting bα−→ and bφ(t) in (4). The estimate
of fX−→( x−→) is

�fX−→( x−→) =
1

2π

Z
| t−→|<B

exp(−i t−→0 x−→)�φX−→( t−→) d t−→,

where B acts as a smoothing parameter, see e.g. Section 2.7 of Prakasa Rao (1983). Our numerical

approach is Monte Carlo integration, which involves generating t1−→, . . . , tM−→ independent uniform vectors

on
¯̄̄
t−→
¯̄̄
< B, for large M and then approximating

�fX−→( x−→) =
1

2π

1

M
real{

MX
i=1

exp(−i ti−→
0 x−→)�φX−→( ti−→)}.

3 Theoretical properties

3.1 Connection to infinitely divisible laws and cumulants

As pointed out by Olkin (1994), any construction of multivariate distributions with given marginals has

limitations, since they apply to many different situations. The restriction that 0 ≤ α ≤ 1 ensures that

φX−→ given by (3) is indeed the characteristic function of a joint distribution for a large class of marginal

distributions which includes the inÞnitely divisible laws (we do not assume existence of a density here). This

class is reasonably rich, and includes many distributions recently used in nonparametric and parametric

statistical modeling such as the stable and the selfdecomposable distributions; see for example Barndorff-

Nielsen (1996), Damian, Laud and Smith (1995), and Samorodnitsky and Taqqu (1994).

In general, our model assumes that the left hand side of (3) is a bivariate characteristic function having

the particular α-decomposition-type (see Cuppens (1975)) given by its right hand side. We do not know
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which kind of marginals other than the univariate inÞnitely divisible give a valid multivariate model (4).

However, we conjecture that (4) well approximates several models, as suggested by Theorem 9.2.1 in

Cuppens (1975) and the results for uniform marginals obtained in Section 4.

Knowledge of the univariate characteristic function φ provides important information about (4) and

conversely. SpeciÞcally, if the marginal characteristic function φ is inÞnitely divisible, so are the multivariate

models (3) and (4). Conversely, if (4) is multivariate inÞnitely divisible with additional properties (see

Cuppens (1975, Ths. 9.3.1. and 9.3.2.)), under the assumption of common marginals, φ is also (univariate)

inÞnitely divisible. Moreover, it is not difficult to see that if φ is a univariate stable (more generally self-

decomposable) characteristic function then (4) gives a multivariate stable (self-decomposable) distribution.

The speciÞc connection with the multivariate Gaussian distribution is illustrated in the next section.

If φ is the (real) characteristic function of a symmetric univariate distribution, then the dependence

model (4) is the (real) characteristic function of a symmetric multivariate random vector. On the other

hand, if
R∞
−∞ |φ(t)|αdt is Þnite, then

Z ∞

−∞

Z ∞

−∞
|φX−→(t1, t2)|dt1dt2 <∞,

and therefore, using Corollary 2.3.1 in Cuppens (1975), the bivariate density of (3) exists, and similarly for

the general multivariate situation. From now on we will always assume the existence of the multivariate

density, which exists for all non-degenerate multivariate self-decomposable distributions (Sato, 1982).

Instead of using characteristic functions, sometimes it is easier to work with the moment generating

functions (when they exist)

MX−→( t−→) =
 Y

1≤j<k≤d
M(tj + tk)

αj,k

 ·
 dY
j=1

M(tj)
1−Pd

k=1,k 6=j
αj,k

 , (6)

MX−→( t−→) = Ee
t0−→X−→ =

Z ∞

−∞
e t

0−→ x−→fX−→( x−→)dx1 · · · dxd

and

M(t) =

Z ∞

−∞
etxf(x)dx.
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From Cuppens (1975, Th. 9.2.1) it follows that if the distribution of the left hand side of (4) has

multivariate moment generating function MX−→, then the moment generating function M of the distribution

of φ also exists.

Norman L. Johnson has pointed out the following fact. Since the log of a characteristic function

generates cumulants, our log model becomes

logφX−→


 t1

t2


 = α logφ (t1 + t2) + (1− α) log [φ(t1)φ(t2)] (7)

and therefore, the dependence model (3) has the interpretation that its cumulants are interpolated averages

of cumulants from the total dependence model and the independent one.

We Þnally observe that the expression (3) has recently been used �in a completely different context�

by Houdré, Pérez-Abreu and Surgailis (1998), as a basic tool for proving correlation inequalities and in

studying association of inÞnitely divisible random vectors.

3.2 Connection to the multivariate normal distribution

When the joint distribution is multivariate normal, with mean vector 0−→ and covariance matrix Σ, the

joint density is

fX−→( x−→) =
1

(2π)d/2 |Σ|1/2
e−

1
2
x−→0Σ−1 x−→.

Much insight about this distribution comes from its characteristic function

φX−→( t−→) = e
−1

2
t−→0Σ t−→

(see Tong (1990, pp 28)).

If we use the approach (4) to create a multivariate distribution from univariate standard normals, using
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the relationship (tj + tk)
2 = t2j + t

2
k + 2tjtk, we obtain

hQ
1≤j<k≤dφ(tj + tk)αj,k

i
·
·Qd

j=1 φ(tj)
1−Pd

k=1,k 6=j
αj,k

¸
=

exp

(
−1

2

" P
1≤j<k≤d

αj,k (tj + tk)
2 +

Pd
j=1

³
1−Pd

k=1,k 6=j αj,k
´
t2j

#)
=

exp

(
−1

2

" P
2

1≤j<k≤d
αj,ktjtk +

Pd
j=1 t

2
j

#)
=

= e−
1
2
t0−→Σ t−→,

where Σ is the covariance matrix with entries αj,k,

Σ =



1 α12 · · · α1d

α12 1

...
. . .

...

α1d · · · 1


.

Hence our model is multivariate Gaussian when we start with Gaussian marginals, and the αj,k are just

the usual correlations.

Conversely, if (4) is a multivariate Gaussian model, then using Theorem 9.3.1 in Cuppens (1975) it

follows that φ is the characteristic function of a univariate Gaussian distribution.

3.3 Connection to Pearson’s correlation

For simplicity and clarity only the case d = 2 is handled here, but the extension to general d is straightfor-

ward. In this section we do not need to assume that the marginal distributions are the same, but instead

only need common second moments. In particular, assume EX1 = EX2 = 0, EX2
1 = EX2

2 = 1, and all

third moments exist. Then, as t1, t2 → 0, standard Taylor expansion gives

E
³
eitjXj

´
= 1− 1

2t
2
j +O

³
|tj |3

´
,

E
³
ei(t1+t2)X1

´
= 1− 1

2 t
2
1 − 1

2 t
2
2 − t1t2 +O

³
|t1|3

´
+O

³
|t2|3

´
,

E
³
ei(t1X1+t2X2)

´
= 1− 1

2 t
2
1 − 1

2 t
2
2 − t1t2E (X1X2) +O

³
|t1|3

´
+O

³
|t2|3

´
.

The relation (as s→ 0)

(1 + s+ o(s))β = 1 + βs+ o(s),
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together with straightforward algebra gives¯̄̄̄
E
³
ei(t1X1+t2X2)

´
−
h
E
³
ei(t1+t2)X1

´iα h
E
³
eit1X1

´
E
³
eit2X2

´i(1−a)
¯̄̄̄
=

=
¯̄̄
t1t2 (α−E (X1X2)) +O

³
|t1|3

´
+O

³
|t2|3

´¯̄̄
.

Thus, when t1, t2 are near to 0, we obtain that eα is near to E (X1X2), the Pearson correlation coefficient

under these assumptions.

This development has been in terms of the �theoretical� correlation coefficient, but the same calculation

also applies to the �empirical� version, by replacing the expectation operator with its sample version, i.e.

by replacing the operation

Eg
³
X−→
´
=

Z ∞

−∞
· · ·
Z ∞

−∞
g
³
x−→
´
fX−→( x−→)dx1 · · · dxd

with

bEg ³X−→´ = n−1
nX
`=1

g
³
X(`)−−→

´
at all points. The assumption of common marginal mean 0 and variance 1 is achieved by �standardizing�,

i.e. by assuming that the X
(`)
j come from data Y

(`)
j as

X
(`)
j =

³
Y

(`)
j − Y j

´
/bσj (8)

for ` = 1, ..., n and j = 1, ..., d, where Y j = n
−1Pn

`=1 Y
(`)
j and

bσj =
"
n−1

nX
`=1

³
Y

(`)
j − Y j

´2
#1/2

.

Thus, in the limit as t1, t2 → 0, we get

bα = n−1
nX
`=1

X
(`)
1 X

(`)
2 = n−1

nX
`=1

³
Y

(`)
1 − Y 1

´(`)

1

³
Y

(`)
2 − Y 2

´(`)

2
/ (bσ1bσ2) ,

which is the empirical Pearson correlation coefficient.

3.4 Connection to other dependence concepts

If 0 ≤ αj ≤ 1, j = 1, ...d, and φ is inÞnitely divisible, model (4) gives the characteristic function of an

associated random vector. Recall that a random vector X−→ is associated if Cov(G1(X−→), G2(X−→)) ≥ 0, for all
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componentwise non-decreasing functions G1, G2 : Rd −→ R, for which the covariance exists (see Houdré,

Pérez-Abreu and Surgailis, 1998 and Samorodnitsky, 1995, for the association of inÞnitely divisible random

vectors).

Recently, Rosinski and Zak (1997) has studied a useful measure of dependence for a general pair of

inÞnitely divisible random variables. Namely, if (X1,X2) is an inÞnitely divisible random vector with

characteristic function φ
¡t1
t2

¢
, the codifference τ(X1,X2) is deÞned as

τ(X1,X2) = logφ

Ã
1

−1

!
− logφ

Ã
1

0

!
− logφ

Ã
0

−1

!
. (9)

For the Gaussian case the codifference is the usual correlation coefficient and in general, it holds that X1

and X2 are independent if and only if τ(X1,X2) = τ(X1,−X2) = 0.

When (X1,X2) follows the model (3),

τ(X1,X2) = −α logφ(1)φ(−1),

that is, the codifference is proportional to α. In general, if (X1, ...,Xd) follows model (4), τ(Xj ,Xk) =

−αj,k logφ(1)φ(−1).

4 Computational study

To gain insight about the properties of our common marginal dependence model, and the proposed estima-

tors, we conducted a computational study which include both theoretical computations and simulations.

Of particular interest is how well our model (3) approximates joint distributions that are not of exactly

that form.

The examples considered were bivariate distributions, normalized so that EX1 = EX2 = 0 and

var(X1) = var(X2) = 1. The dependence structures were:

D1 X1, X2, independent.

D2

 X1

X2

 = Σ−1/2

 Z1

Z2

, for EZ1 = EZ2 = 0, var(Z1) = var(Z2) = 1, and Σ =

 1 .5

.5 1

. This
intended to be a �moderate positive correlation� model.
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D3 Same as D2, except Σ =

 1 .9

.9 1

. This is intended to be a �high positive correlation� model.
D4 A mixture of the degenerate distribution X1 = X2 (with probability 1/2) and the X1,X2 independent

distribution (with probability 1/2). This is distribution has positive correlation of a very nonstandard

type.

D5 A mixture of the two degenerate distributions X1 = X2 (with probability 1/2) and X1 = −X2 (with

probability 1/2). This distribution is supported on the 45 degree lines in the plane and is a very

nonstandard distribution. Even the notion of �correlation� could be deÞned in many quite different

ways.

D6 Same as D2, except Σ =

 1 −.9

−.9 1

. This is intended to be a �high negative correlation� model.
Note that our model is not expected to work at all here, because it is speciÞcally designed for positive

correlation.

The marginal distributions considered were:

M1 Gaussian.

M2 Laplace (also called the �double exponential�). Intended to represent non-Gaussian shapes.

M3 Uniform. Even further from the Gaussian in shape.

M4 Exponential. A different type of non-Gaussian, and also asymmetric.

Four natural norms were considered for the estimation procedure of Section 2:

N1 Standard L2: kf1 − f2k2
1 =

R∞
−∞ · · ·

R∞
−∞

¯̄̄
f1( t−→)− f2( t−→)

¯̄̄2
d t−→,

N2 Weighted L2: kf1 − f2k2
2 =

R∞
−∞ · · ·

R∞
−∞

¯̄̄
f1( t−→)− f2( t−→)

¯̄̄2
e( t−→

0 t−→)d t−→, (this puts more weight on the

origin)
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N3 Weakly Weighted L2 :

kf1 − f2k2
3 =

Z ∞

−∞
· · ·
Z ∞

−∞

¯̄̄
f1( t−→)− f2( t−→)

¯̄̄2
e( t−→

0 t−→)/2d t−→,

(this uses weights in between k·k1 and k·k2)

N4 Evaluation at 0: kf1 − f2k4 =
¯̄̄
f1( 0−→)− f2( 0−→)

¯̄̄
, (this is only a seminorm, but is included to study

the connection to Pearson�s correlation discussed in Section 3.3).

We have done both theoretical and empirical computations for all combinations of the above settings,

but just show a few here, chosen to highlight the main ideas, to save space. The case of the mixture

dependence (D4), with the Laplace marginal distributions (M2) was fairly representative (our model gave

better performance in most cases). Figure 4.1 shows the theoretical joint characteristic function, φX−→( t−→),

together with the characteristic function of our model as deÞned in (3), Þt by the L2 norm (N1). The

approximation is reasonable, but not perfect. We observed substantially better approximation for the

more standard dependence models (D1), (D2) and (D3), and also for the Gaussian common marginal

distributions (M1).

place Figure 4.1 about here

Figure 4.1: Characteristic functions, for the underlying joint distribution. Left hand panels

are for the true underlying joint distribution, right hand panels are for the model of the form (3)

Þt by norm (N1). Top panels are mesh plots, and bottom panels are contour plots of the same

surfaces. For the mixture joint distribution (D4), with common Laplace marginal distributions,

(M2).

Insight into the behavior of the different norms (N1)�(N4) is given in Figure 4.2, which shows these

as a function of the parameter α. In what follows eαi denotes the minimizing value under norm Ni. The

theoretical value of Pearson�s correlation for this joint distribution is 0.5, so the norm (N4) works as

expected, with eα4 = .499. When �correlation� is instead taken to be the α that minimizes other norms,

the value is somewhat different. Most different is the standard L2 norm (N1), with eα1 = .714. Putting

13



more weight on the origin gives something in between (N1) and (N4), so it is not surprising that the

minimizers are eα2 = .569 and eα3 = .609 (note (N3) is �between� (N1) and (N2)).

place Figure 4.2 about here

Figure 4.2: Theoretical norms between joint characteristic functions and our common marginal

dependency model, as a function of the dependency parameter α. Norms are (N1) for Fig 4.2a,

(N2) for Fig 4.2b, (N3) for Fig 4.2c, and (N4) for Fig 4.2d, For the mixture joint distribution

(D4), with common Laplace marginal distributions (M2).

An interesting variation on Figure 4.2 showed up for the unusual dependency model (D5), with Gaussian

marginal distributions (M1), as shown in Figure 4.3. For this model the notion of �correlation� that follows

from the standard L2 norm has two solutions eα1 = ±0.790. This is consistent with the fact that �positive�

and �negative� correlations are not simply deÞned notions for this model (where the bivariate probability

puts mass symmetrically on the two 45◦ lines in the plane). However, the other three norms all result in

eαi = 0 (only (N3) is shown but the others are similar) which is also a sensible deÞnition of �correlation�.
Insight as to why these answers are different comes from studying the mesh plots of the characteristic

functions, as shown in the lower row. Note that the joint characteristic function is approximately radially

symmetric near the origin, but has distinct �shoulders� away from the origin. The standard L2 norm is

more strongly inßuenced by points away from the center, so these �shoulders� give the multiple minima

apparent in Figure 4.3a (which reßect Þtting quite elliptical Gaussian distributions, of the type shown

in Figure 4.3d). But the other norms are more strongly inßuenced by points near the origin, where the

radially symmetric part is dominant, so the best Gaussian Þt is spherical.

place Figure 4.3 about here

Figure 4.3: Top row shows theoretical norms between joint characteristic functions and our

common marginal dependency model, as a function of the dependency parameter α. Norms

are the standard L2 norm (N1) for Fig 4.3a, the weighted L2 norm (N3) for Fig 4.3b. Large

differences are explained by characteristic functions shown in the bottom row, joint for Fig 4.3c,

and our model, Þt by (N1) for Fig 4.3d.
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Next we studied the performance of the empirical version of our model, in these various contexts.

For comparison with the theoretical case, we again focus on the non-standard mixture distribution (D4),

and common Laplace marginals (M2). This case was again fairly representative. Using one pseudo data

set of size n = 100, gave the empirical version of Figure 4.1 that is shown in Figure 4.4. This is the

empirical joint characteristic function, bφX−→( t−→), together with the empirical Þt of our model, Þt by the L2

norm (N1). Again as in Figure 4.1, the approximation is reasonable, but not perfect. Again we observed

substantially better approximation for the more standard dependence models (D1), (D2) and (D3), and

when the common marginals were Gaussian (M1).

place Figure 4.4 about here

Figure 4.4: Empirical characteristic functions, based on a single pseudo data set of size

n = 100. Left hand panels are for the empirical joint distribution, right hand panels are for

the model of the form (3) Þt by norm (N3). Top panels are mesh plots, and bottom panels

are contour plots of the same surfaces. For the mixture joint distribution (D4), with common

Laplace marginal distributions, (M2).

The empirical versions of Figure 4.2 are not worth the space, because the norms were quite similar to

each other in this case (and had a shape very similar to what is seen in Figure 4.2). The analogs of this

for most other settings were similar. Even the analog of Figure 4.3 had a similar �single minimum� shape

(because the special symmetry that created the two minima disappeared in the empirical characteristic

function).

Next we studied the sampling properties of our model, by simulating 100 pseudo data sets, each of

size n = 100, for all combinations of settings above. We studied a variety of summary statistics and the

most interesting lessons are demonstrated in Tables 1 and 2. The joint distributions (D5) and (D6) are

excluded, because they seemed to add unnecessary distraction to this part of the presentation (and are

remarked upon separately below). It is sensible to rule out the negative correlation model (D5), because

our mathematics assume positive correlation (which can always be obtained by changing the sign of one

variable). It is also sensible to rule out (D6) because even �correlation� is not a well designed concept in
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that context.

Table 1 compares the different norms from the viewpoint of their relative variability. The main lesson

is that the seminorm of evaluation at the origin (N4) has generally much higher variability than the others,

which is not surprising because it is driven by the value of the empirical characteristic function at the

origin, instead of by integrals of the whole characteristic function. The integral based norms, (N1), (N2)

and (N3), were fairly close, but (N3) has marginally smaller variability (in most cases, this is likely not

statistically signiÞcant) than the others, so we prefer it. The norm (N3) is also intuitively appealing because

it is intermediate to the other two.

Table 2 studies the correlation of each parameter estimate, bα1, bα2, bα3, and bα4 with the empirical Pearson

correlation coefficients, bρ. The integral based norms are reasonably strongly correlated with bρ, and as might
be expected, the correlation is usually strongest for the Gaussian common marginals (M1). The evaluation

seminorm (N4) had perhaps surprisingly lower correlation (even negative in one case, although likely that

is not statistically signiÞcant), which shows that the limiting operation in the connection in Section 3.3 is

crucial.

When the strongly negatively correlated model (D6) was blindly used in our setup, we obtained rea-

sonable results (meaning mostly very negative values of the bαi) for the Gaussian (M1) and Laplace (M3)
distributions, but substantially poorer results (i.e. mostly negative, but near 0) for the Uniform (M2)

distribution, and completely unacceptable results (i.e. too often positive) for the asymmetric Exponen-

tial distribution (M4). We conclude that our dependence model is not robust against violation of the

assumption of positive correlation, and recommend that adjusting for this by changing appropriate signs

of variables is worthwhile.

We also studied the performance of our Þnal marginal density estimates bfX−→( x−→), deÞned in Section
2.2. Graphs aren�t shown to save space, but the results were as expected. The estimation was very good

for the case of Gaussian (M1) marginals, but not so good for the Laplace (M3) marginals, because of the

�kink� at the origin, and rather poor for the Uniform (M2) and Exponential (M4) marginals because these

have jumps. These results are consistent with the well known property of Fourier smoothing, that it is

more effective when the underlying target curve is smoother. Choice of the smoothing parameter B is an
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Norm 1 Norm 2 Norm 3 Norm 4

D1, M1 0.1473 0.1291 0.1272 0.2964

D1,M2 0.1336 0.1524 0.1391 0.3265

D1,M3 0.0696 0.1014 0.0889 0.2892

D1,M4 0.2002 0.1364 0.1175 0.3160

D2, M1 0.1068 0.1023 0.0971 0.1702

D2,M2 0.0839 0.0910 0.0829 0.1628

D2, M3 0.1171 0.1115 0.1199 0.1626

D2, M4 0.0852 0.1040 0.0923 0.1724

D3, M1 0.0269 0.0217 0.0221 0.0381

D3, M2 0.0271 0.0244 0.0220 0.0369

D3, M3 0.0237 0.0283 0.0273 0.0374

D3, M4 0.0210 0.0306 0.0287 0.0367

D4, M1 0.0603 0.1038 0.0934 0.1631

D4, M2 0.0640 0.0982 0.0837 0.1710

D4, M3 0.0569 0.1205 0.1130 0.1386

D4, M4 0.0388 0.0741 0.0573 0.1795

Table 1: Standard deviations of estimates bα1, bα2, bα3, and bα4, from 100 psuedo data sets, of size n = 100 ,

for each type of joint distribution, and each type of common marginal distribution.
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Norm 1 Norm 2 Norm 3 Norm 4

D1, M1 0.4516 0.6404 0.6405 0.1210

D1,M2 0.3735 0.5575 0.5368 0.3376

D1,M3 0.5210 0.5628 0.5825 0.1200

D1,M4 0.1711 0.2305 0.2246 0.1988

D2, M1 0.6848 0.7462 0.7848 0.3363

D2,M2 0.3676 0.4979 0.5164 -0.0520

D2, M3 0.8345 0.8398 0.8924 0.3468

D2, M4 0.3981 0.4599 0.4379 0.1804

D3, M1 0.5228 0.7497 0.7259 0.2682

D3, M2 0.6174 0.5811 0.7071 0.1946

D3, M3 0.8669 0.8142 0.8940 0.1837

D3, M4 0.3143 0.2459 0.2462 0.0723

D4, M1 0.3497 0.7981 0.7459 0.2489

D4, M2 0.3815 0.6623 0.6187 0.3437

D4, M3 0.5833 0.8757 0.8846 0.1964

D4, M4 0.1187 0.2812 0.2205 0.3209

Table 2: Correlations of estimates bα1, bα2, bα3, and bα4, with the empirical Pearson correlation coefficients,

bρ. From 100 pseudo data sets, of size n = 100 , for each type of joint distribution, and each type of common
marginal distribution.
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interesting issue that we have not yet addressed.

5 Data Application

5.1 CO and Ozone Data from a Monitoring Network

When modelling a single variable in environmental monitoring, it is often appropriate to assume common

marginals; moreover, the Gaussian assumption is not often met so one must build a different dependence

model in order to estimate the associated multivariate density. In this section we illustrate our multivariate

modelling by considering data at four stations of the automatic air monitoring network in Mexico City

(known as RAMA), examining two pollution variables, one at a time: CO and Ozone. Additional RAMA

stations were not considered here because they did not provide an adequate amount of data which was

complete in these variables. We presently focus only on Þtting the model; this is a Þrst step towards

further and more general analysis in this setting, for example, in Þnding the least informative station using

the Shannon index as a measure of performance (see Caselton and Zidek (1984) and Pérez-Abreu and

Rodŕõguez (1996)).

The RAMA stations considered are: Merced (MER), Pedregal (PED), Cerro de la Estrella (EST) and

Plateros (PLA). PED and PLA are located SW, EST is NE, and MER is near the center of the city.

The data consist of vectors of dimension d = 4, with each entry corresponding to the weekly maxima of

CO and ozone at each station for the years 1988�1993. We consider only those weeks for which complete

observations (simultaneously in all stations) were available; 122 observations for CO, and 128 for ozone

were obtained. Station-wise scatterplots show distinguishing features for which our model seems especially

appropriate: positive correlations, and common marginals (of an unspeciÞed nature). In both examples

below, the parameters in the characteristic function (4) are estimated using norm (N3).

When considering CO, preliminary inspection showed us clearly that common marginals are plausible

in three of the stations considered, so our Þrst example concerns CO observations disregarding PED. The

exclusion of PED may be debatable, because the degree to which its distribution does not conform to the

other three is not serious; but we prefer to be cautious in this illustrative example. Upon standardizing
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each data entry by substracting marginal means and dividing by marginal standard deviations, we observe

that the marginals are approximately the same, and heavily right-skewed (i.e. far from Gaussian). The

estimated α values are

EST PLA

MER 0.20 0.12

EST 0.44

.

Estimates of α are non-negative, as expected in an air pollution monitoring network, and correlation is

stronger between EST and PLA despite the fact that there is a large distance between these two stations.

A possible explanation for this is that station PLA is aligned with respect to EST in a north-easterly

direction, so that correlation could be induced by transport due to dominant trade winds.

Our second example concerns Ozone observations at the four stations. In this case we observe that

the marginal distributions approximately follow the same distribution in all four stations after appropriate

standardizing. Results of estimates of α are

PED EST PLA

MER −0.01 0.57 0.03

PED 0.06 0.51

EST 0.27

.

Notice, in contrast to CO, that zero correlation between some pairs of stations (MER-PED, MER-PLA,

PED-EST) is suggested, which correspond to pairs of stations which are geographically far apart from each

other, and in different types of location (residential vs. industrial).

5.2 Graphical Results

A speciÞc goodness of Þt tool has not yet been developed especially for this model, so for this purpose we

use the following ad hoc graphical device. Let v−→ represent a direction in Rd with | v−→ |= 1. We compare

real and imaginary parts of the empirical characteristic function (5) and the Þtted characteristic function

(4), by plotting these at t v−→, for −2 ≤ t ≤ 2 for different choices of v−→. When v−→ is made equal to each

of d orthogonal directions �principal components based on the sample covariance matrix of data, for
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example� this amounts to comparing two characteristic functions in d variables along orthogonal slices

in Rd. If v−→ was instead taken to be standard directions, the d plots obtained would compare each of the

marginal distributions; but notice that at least one additional plot in a non-standard direction is required

in order to better resolve dependence structure, because plots for a distribution with common marginals

and any correlation structure would always show agreement in the standard directions. The alternative

graphical display used in Figure 4.4 also compares an empirical and a Þtted joint characteristic function,

but it is well suited for two dimensions only.

Figure 5.1 shows the plots which result from the 3-dimensional Þt to the CO data, letting v−→ be the Þrst

principal component and the three standard directions. Notice that there is general agreement in these

plots. The non-zero imaginary parts in the marginal plots show that this distribution is asymmetrical.

place Figure 5.1 about here

Figure 5.1: CO Data. Comparison of real (solid) and imaginary (long dashed) parts of

empirical and real (dotted) and imaginary (short dashed) parts of Þtted characteristic functions,

corresponding to the Þrst principal component and the three standard directions.

Similar plots constructed for ozone as a result of the 4-dimensional Þt in the directions of all four

principal components and standard directions give even better agreement, and are not shown here. In these,

imaginary parts of characteristic functions are practically zero, indicating that the marginal distributions

involved are more symmetric; furthermore, the shape of the real part of the marginal characteristic functions

suggests that ozone may be described by a distribution which is nearly multivariate Gaussian.

In order to get a feel for what this graphical method is doing, consider three standardized 3-dimensional

data sets of size 125 (this value was chosen because it is central to our real data examples): the Þrst

originated from a Gaussian distribution with correlation among entries; the second from i.i.d. realizations of

a (N(0, 1), U(0, 1),χ2
1) vector with independent entries (that is, a joint distribution which doesn�t even share

common marginals); and the third from i.i.d. realizations of independent common χ2
3 random variables.

Assuming model (4), estimating α parameters, and constructing the described plots in each case produces

Figure 5.2. Notice that there is general agreement in characteristic functions in the Þrst and last data
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sets, whereas in the second there clearly is not. An important aspect of Figure 5.2 is that it illustrates by

how much these plots (for the given sample size) can differ for data whose model is (4). Also, it is here

evident that inspection of various directions is necessary, because there is not a single direction which tells

the whole story. Discrepancies for the Þrst and third simulated data sets are qualitatively similar to the

ones obtained for CO in Figure 5.1 and for ozone (not shown); we interpret this to mean that there are

not severe objections to the validity of the model (4) in these cases.

place Figure 5.2 about here

Figure 5.2: Comparison of real (solid) and imaginary (long dashed) parts of empirical and

real (dotted) and imaginary (short dashed) parts of Þtted characteristic functions, corresponding

to the Þrst principal component and the three standard directions, for three sets of standardized

3-dimensional data of size n = 125. The Þrst row originated from a trivariate Gaussian distri-

bution with correlation among entries; second row from i.i.d. realizations of a (N(0, 1), U(0, 1),

χ2
1) vector with independent entries; third row from i.i.d. realizations of independent common

χ2
3 random variables.

6 Conclusions

We constructed a semiparametric model for multivariate observations when the marginals are the same.

The model incorporates parameters which give a new notion of dependence for a wide family of distribu-

tions.

The model (4) has nice properties and is useful when the marginals are inÞnitely divisible. It enables

easy multivariate modelling with common marginals taking into account dependence parameters between

all pairs of marginals, and reduces to the multivariate Gaussian in the case of Gaussian marginals.

To estimate the dependence parameters we considered the empirical characteristic functions in such a

way that the assumption of same marginals is involved. A computational study was conducted to evaluate

several norms used in the estimation of the dependence parameters. Our recommendation is that norm

(N3) should be used for this purpose. The proposed method was applied to two sets of pollution data from
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an environmental monitoring network, showing that the proposed distribution has potential for modeling

this type of environmental data.
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[15] Rosiński, J., and Zak, T. (1997). The equivalence of ergodicity and weak mixing for inÞnitely divisible

processes. Journal of Theoretical Probability, 10, 73�86.

[16] Samorodnitsky, G. and Taqqu, M. (1994). Stable Non-Gaussian Random Processes. New York: Chap-

man and Hall.

[17] Samorodnitsky, G. (1995). Association of inÞnitely divisible random vectors. Stochastic Processes and

Their Applications 55, 45-55.

[18] Sato, H. I. (1982). Absolute continuity of multivariate distributions of class L. Journal of Multivariate

Analysis 12, 89-94.

[19] Tong, Y. L. (1990). The Multivariate Normal Distribution. New York: Springer-Verlag.

[20] Yashin, A. I. and Iachine, I. A. (1995). Survival of related individuals: an extension of some funda-

mental results of heterogeneity analysis. Mathematical Population Studies 5, 321-339.

[21] Yashin, A. I., Vaupel, J. W. and Iachine, I. A. (1996). Correlated frailty models: an advantageous

approach to the analysis of bivariate data. Mathematical Population Studies 5,1-15.

24



nakamura
Figure 4.1



nakamura
Figure 4.2

nakamura



nakamura
Figure 4.3



nakamura
Figure 4.4



nakamura
Figure 5.1



nakamura
Figure 5.2




